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efforts into the thesis that follows.

I wish to thank my sponsors, Capt. Thomas Harper and

Mrs. Denise Jacobs of the Information Transmission Branch at

the Avionics Lab, AFWAL/AAAI# for their outstanding support

in seeing me through this research effort. Mrs. Jacobs

provided much help in getting the computer simulation hosted

on the base computer. Also I wish to thank their branch chief
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thesis effort to be conducted in his branch.
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Abstract

The performance of a spread spectrum receiver preceded

by an adaptive interference suppression (AIS) filter is

determined for various CW jamming signals. An analysis and

simulation of an AIS filter, covering the band from 200-300

MHz, implemented with a SAW device is presented. The simu-

lation includes modeling of the SAW device, filter tap weights,

Applebaum and power inversion adaptive control algorithms,

and filter fabrication and circuitry errors. Both desired

and interfering signals are generated in the simulator,

passed through the AIS filter, and demodulated by a

simulated matched filter. System performance was determined

by measuring the improvement in pre-detection signal-to-

jammer ratio (SJR) and post-detection signal-to-jammer

plus noise ratio (SJNR) provided by the AIS filter, and

by computing the AIS /filter convergence rate. To validate

the AIS filter performance, the following additional simu-

lation data was acquired both before and after filter

adaption: the filter frequency response, the receiver

correlation response, and the pre-detection signal plus

jammer plus noise spectrum. In all 22 cases analyzed,

the jammer power is 30 dB, the signal power is 0 dB, and 7
the filter is allowed to adapt for 35 iterations. The

AIS filter provided improvement in all cases analyzed

except the case where the CW jammer is located at the

center frequency of the signal. Typical improvement of pre-

xiii



Abstract (cont.)

detection SJR ranged from 20-49 dB. The Applebaum algorithm

provided greater improvement in SJR and in SJNR than the

power inversion algorithm. Both the Applebaum and power

inversion algorithms implemented in the frequency domain

converged faster than their respective time domain implemen-

tations. However, the time domain implementation of the

adaptive algorithms provided greater improvement in SJR and

in SJNR than the frequency domain implementation. Filter

fabrication and circuitry errors caused the null depths of

the adapted filter responses to be degraded relative to

their respective responses without errors.

xiv
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TIE PEIPORIANCE OF & PlH SPREAD SPECTRUM RBCEIVER

PRECEDED BY AN ADAPTIVE INTERFERENCE SUPPRESSION FILTER

I. Introduction

Backqround

The purpose of any communication system is to transmit

information or data with an acceptable probability of error

or signal-to-noise ratio. In an ideal environment, a channel

bandwidth approximately equal to the data rate is sufficient

to transmit the information. In a noisy, crowded, or hostile

environment, four classes of techniques exist which can be

applied to achieve partially secure antijam communications:

- Brute-Force Techniques

- Spatial Discrimination Techniques

- Spread Spectrum Techniques

- Interference Suppression Techniques

Brute-force techniques include increasing the peak

transmitted power or increasing the average power by

extending the transmitter duty cycle or the bit period

(Ref.22:2-1). However, these techniques increase the

probability of interception of the signal by enemy receivers,

increase the likelihood of self-interference, and are costly.

Also, often the maximum transmitter power is limited by

technology and by limited availability of prime power.
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Spatial discrimination techniques include adaptive or

null-steering antennas, low sidelobe antennas, and beam

steering antennas for jammer suppression. However, these

techniques have limitations due to the high cost of

retrofitting aircraft platforms with advanced multi-element

antennas, the high-gain antenna tracking and pointing

problems, and the limited degrees of freedom inherent in an

adaptive antenna.

Spread spectrum (SS) techniques include direct

sequence (DS) or pseudonoise (PN), frequency hop (FH), time

hop (TH), and any hybrid combination of these modulation

schemes. SS communications systems are those systems in

which the transmitted signal is spread over a wide frequency

band. This band is much wider than the minimum bandwidth

required to transmit the information being sent. Because an

SS system distributes the transmitted energy over a wide

bandwidth, the signal-to-noise ratio (SNR) at the receiver

input is low. These systems are employed to reduce the

probability of intercept and to increase the resistance to

jamming or interference. Equivalently, SS systems are very

useful for military communications because they make it

difficult to detect the transmitted waveform, extract the

message, or jam the intended receiver. The increased

bandwidth required for SS operation creates two limitations.

One is the limitation on transmission bandwidth set by the

FCC. The other is that technology limits the speed of PN

2
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codes (e.g. bandwidth).

Interference suppression techniques include active

notch filters, weak signal enhancers, pulse suppression,

frequency selective limiters, and frequency domain

processors. These techniques are tunable and adaptive.

However, they are limited by the maximum number of

interfering signals which can be suppressed at one time, the

cost of implementation, the tracking rate, and the bandwidth

of the interfering signals. Given these limitations, an

adaptive interference suppression (AIS) filter which is a

programmable transversal filter (PTF) will be the tunable

filter under study in this thesis.

As was described previously, SS techniques provide

some antijam capability, however in a hostile scenario

increased antijam protection may be needed. Additional

immunity to jamming and interference can be realized by

implementing the above described PTF in a SS system to

perform filtering of the signal prior to detection.

There are many types of disturbances which can affect

a communications system. White noise is always present.

Further, many types of jammers may be employed by the enemy

to degrade communication signals (Ref. 5:32). A continuous

wave (CV) jammer is a single frequency sinusoidal jammer. A

pulse jammer is a CV jammer that is turned on and off. A

swept jammer is a CW jammer whose frequency is varied as a

function of time. A partial band jammer is one that

3



continuously jams a band of frequency, and a barrage jammer

is a partial band jammer that is turned on and off.

Much of the work in this thesis effort resulted from

an on-going contract between the Air Force Avionics

Laboratory and Texas Instruments. Texas Instruments (TI) is

under contract to develop an adaptive interference

suppression filter for possible implementation into the

Integrated Communications, Navigation, and Identification

Avionics program. Texas Instruments developed a computer

simulation of an AIS-PTF device implemented in a SS system.

Additionally, TI built an experimental surface acoustic wave

(SAW) PTF device. The original version of TI's computer

simulation was hosted on the Wright-Patterson Air Force base

computer for both this thesis effort and a follow-on effort

to be conducted by the Avionics Laboratory. Modifications to

the simulation were made for this thesis effort. Namely, a

white Gaussian noise (WGN) generator was added. Also, a

statistical subroutine was added in order to assess

performance improvement at the output of the correlator.

Texas Instruments has investigated system performance only at

the input to the correlation detector. Both pre-detection

and post-detection system performance will be investigated in

this thesis.

This thesis is not intended to be a review of the

immense work done on surface wave phenomena and its

application to SS devices since the initial inventions about

4



20 years ago. Rather, the work presented provides a working

knowledge of SS system performance improvement utilizing a

pre-detection surface wave device for the MIS function.

Problem Statement

The improved performance of an SS receiver preceded by

an AIS filter will be determined for various jamming signals.

The basic philosophy is to suppress the interference with

minimum degradation to the information which was transmitted.

The performance improvement will be measured in terms of

pre-detection signal-to-jammer ratio (SJR), and

post-detection signal-to-jammer plus noise ratio (SJNR).

Scope

This thesis will provide an analysis and simulation of

an AIS filter implemented with a SAW device. The simulation

includes modelling of the SAW device, tap weights, adaptive

control algorithms, and filter fabrication and circuitry

errors. Both desired and interfering signals will be

generated in the simulator, passed through the AS filter,

and demodulated by a simulated matched filter. System

performance improvement provided by the AIS filter will be

determined.

5



Assumptions

The following assumptions were made to narrow the

problem to one that could be handled within the time alloted:

1. Simulation and analysis will utilize SS signals

with emphasis on direct sequence PN biphase
modulation.

2. Performance improvement will be investigated for
one or more CW jammers. If time permits, the
jammers will be pulsed or swept.

3. Synchronization of the PN code exists in the
modem.

4. Because of certain hardware constraints imposed by
the PTF, certain adaptive algorithms are more
suitable than others for control of the filter tap
weights. Factors that should be considered in
choosing an algorithm include compatibility with
the PTF, speed of convergence, computation time,
and memory requirements (Ref.22:2-2). The
Applebaum and the Power Inversion adaptive
algorithms will be used to control the filter tap
weights for the reasons stated above.

Approach and Sequence of Presentation

The approach used in this thesis is to analyze the

effect of processing operational threats through a DS

modulated SS system which includes a pre-detection AIS

filter.

Section II is a tutorial presentation of spread

spectrum (SS) principles including a discussion of the

performance of SS systems.

Section III discusses how improved SS system

6



performance can be realized by pre-detection adaptive

interference suppression (AIS) techniques. Primary emphasis

is directed toward the surface acoustic wave (SAW) device for

application to the interference rejection problem. The

underlying theory of SAW devices is presented followed by a

detailed discussion of the SAW filter configuration chosen

for study in this thesis.

Section IV presents an analysis of performance results

due to the interference suppression filter. The SS system

performance when utilizing a pre-detection filter is

determined in terms of the signal-to-noise ratio (SNR) at

both the input and output of the correlation detector.

Additionally. a number of other characteristics of the AIS

filter and its implementation in an SS system are analyzed.

Namely, its frequency response (before and after filter

adaption) and its convergence rate.

Section V summarizes the results of this thesis and

presents recommendations for further study.

Appendix A presents a survey of four classes of

adaptive algorithms discussing their basic characteristics,

advantages, and disadvantages. The steepest descent class of

algorithms, in particular the Applebaum and Power Inversion

algorithms are analyzed to show how they adaptively change

the filter weights.

7
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Finally, Appendix B presents a description of the

computer simulation along with flowdiagrams for the

communications simulator which was utilized for this thesis

effort.
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11. Spread Spectrum System Principles (Refs.4,8)

A SS system is one in which the transmitted signal is

spread in frequency to a bandwidth much greater than the

information bandwidth. In a conventional communications

system, a digital symbol of time duration T is usually

transmitted in a bandwidth of W w 2/T . This digital pulse

has only one amplitude and phase state over the interval T

and is considered to have only a single Odegree of freedom".

Interference and jamming waveforms can resemble digital

symbol waveforms and cause performance problems. SS systems

protect against performance degradation by increasing the

number of "degrees of freedom' of each data symbol according

to a pseudonoise sequence. This requires increased

transmission bandwidth.

SS techniques have made possible the development of

jam resistant communication systems with multiple access, low

probability of intercept (LPI), and high resolution ranging.

SS signals are generated via special modulation techniques.

There are many types of SS systems and many reasons for

utilizing different types of SS modulation. However, there

exists a common principle in all SS applications: that is

rejection of interference, or conversely, improved signal

detectability is achieved at the expense of increased

transmission bandwidth. The basic types of SS modulation

include direct sequence (DS), frequency hop (PH), time hop
9
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(TH), and any hybrid combination of these modulation schemes.

In a DS system, the information data is added modulo

two to a higher speed PN code sequence. The combined

information and PN code are then used to suppress-carrier

modulate an RF carrier (ie. BPSK, QPSK, or MSK). Or,

equivalently, the information data can be used to

suppress-carrier modulate an RF carrier. The combined

information and RF carrier are then used to modulate a PN

code.

Frequency hopping is the periodic changing of the

frequency or frequency set associated with a transmission. A

PN code determines successive frequency sets. If the data

modulation is multiple FSK, then two or more frequencies are

in the set that changes at each hop. For other data

modulation schemes, a single center or carrier frequency is

changed at each hop (Ref.24:65).

Time hopping is a technique used to obtain spectral

spreading by channelizing the carrier through the use of time

slots that use a burst of transmission within the slot. The

PN code selects the slot in which the transmitted pulse

occurs.

Additionally, any combination of these modulation

techniques can be employed, as is often the case.

10



Bread Spectrum System Model

The baseline components of a DS modulated SS

communications system employing binary phase shift keyed

(BPSK) signaling are illustrated in Figure 1 where:

- d(t) is the digital data sequence (±1).

- E/T is the signal power.

- PN(t) is the PN code sequence (±1).

- w0 is the carrier frequency (rad/sec).

Multiplication of the bipolar binary data sequence by a

carrier results in a phase shift of zero or w radians. The

phase modulated carrier is then multiplied by the PN

spreading sequence, PN(t). The rate of the PN code is

typically on the order of megabits per second, while the rr*

of the message waveform is typically on the order of kilobits

per second. As a result of this modulation of the

information signal by the PN code sequence, the power in the

transmitted signal is spread in frequency over a bandwidth

corresponding to the PN clock frequency. Because the

transmitted energy is spread over a wide bandwidth, the SNR

at the receiver input is low. Thus, to the unwanted

observer, the signal appears to be wideband noise.

The receiver has a reference code generator which is a

replica of the transmitted spreading code. The reference PN

code generator, when synchronized with the received spreading

11
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code, is used to strip the PN code off the signal as

illustrated in Figure 2. The received signal, R(t), is first

multiplied by the synchronized reference code and then passed

through a correlation detector whose output is the sufficient
1

statistic, e . Using a threshold device and the sufficient

statistic. a decision is made as to which of two hypotheses

is correct. Under one hypothesis, H , a message bit

d(t) - 1 is detected. Under the other hypothesis H1 , a

message bit d(t) - -1 is detected.

It is intuitively obvious that the difference between

SS systems and conventional systems is the multiplication by

the PN code sequence at the transmitter and receiver. At

this point, a description of the characteristics of PN

sequences will be presented, since they are so important in

SS system implementation.

Characteristics of PN Sequences

The terms pseudorandom (PR) or pseudonoise (PN) are

coined for this class of sequences because the sequence

generates sample statistics similar to a random noiselike

A sufficient statistic is a value which provides enough
information about an observation to enable a proper decision
about what message was sent (Ref.13:63).

13
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Figure2.Dsta Modulatlon/Demodulatm of a PH Sequenie.

waveform. However, the sequences are both deterministic and

periodic. A completely random binary sequence could be

generated by using successive tosses of a coin and writing a

1 when a head appears and a 0 when a tail appears.

The type of sequence under study is the random binary

sequence PN(t) - ±1 . This class of sequences exhibits three

randomness postulates (Refs.8:10 and 11:1):

1) The Balance Property. The number of plus ones will

be approximately equal to the number of minus ones.

2) The Run Property. Among the runs of consecutive

ones and zeroes, about one-half of the runs of each kind are

of length one, one-fourth of each kind are of length two,
14



one-eighth are of length three, and so on.

3) The Correlation Property. The expectation of the

autocorrelation function of the sequence is maximum at the

origin and decreases rapidly away from the origin.

The PN binary sequence is generated using shift

registers and tapping the output back to the input. The

output of the shift registers will be a PN sequence of ones

and zeroes called chips. This sequence will repeat itself

every 2N - 1 chips for an N-bit shift register. For the

model under study, the PN sequence consists of chips of

Tc seconds duration, and amplitude ±1. It is assumed that

the sequence is continuous, that the positive and negative

chips occur with equal probability, and that successive

pulses are statistically independent. Figure 3a illustrates

an arbitrary portion of a typical PN sequence.

The autocorrelation function of the PN sequence,

R (T), is the time average of the sequence multiplied by a time

shifted version of itself (Ref.16:301). The autocorrelation

function is given by

RpN I(T) - y~. -fr2 PI(t)PN(t+T)dt

(1)

where T is the amount of time shift.

From the randomness property 1, it is clear that for

1r1 > T , the average value of PN(t) • PN(t+T) is

approximately zero since its instantaneous value has an equal

15
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probability of being plus one or minus one. On the other

hand, for Iti I Tc , the average value over one chip of

PN(t) . PN(t+r) is given by the area of the overlapping part

of the displaced chips divided by T , as illustrated in

Figure 3a. This area is given by T - ITI, s0

)I
(T T 2 Ii) fOr ITI To0 for ITI > To (2)

as illustrated in Figure 3b.

The power spectral density (PSD), 3PN (w) , for a PN

sequence is found as a consequence of the Wiener - Khintchine

theorem applied to the autocorrelation function R (T):
PN

(w) f Rp (T)e'JWTd

(3)

Because RPN (T) is an even function, the PSD can be expressed,

utilizing Euler's formula, as

$pr(W)-) R p(r)ooe(aT dT

(4)

Further, substituting R PN(T) and making use of symmetry

yields

17
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(5)

The PSD, S (w) , is shown in Figure 3c.
PN

Spread Spectrum System Performance

In reference to Figure 1, the transmitted waveform of

the SS system model is given by

St) - V2i12 d(t)PN(t)eo*Cwot) 0 < t < T
(6)

where T, the message bit interval, is an integer multiple of

T , the code bit interval. The received signal can be
C

represented by

R(t) - S(M) + (t)

(7)

where n(t) is zero mean, white Gaussian noise (WGN) with a

PSD of S (W) - N /2 (watts/HZ), and is independent of the PNn 0

code. Assuming code synchronization, the received waveform

is multiplied by a stored replica of the code to produce the

18
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following:

Rt(t) f2_172E/T d(t)P1R(t)eO#(at) + PN(t)nitt)

,5-1.7 d(t)ooe(cOt) + n'(t)

(8)

The autocorrelation of n'(t) is given by

- 9 Pn(t,) )JVrn I n t1)nt 2)

- R~,t1 -t 2 )(No 12) 6 (t1 - 2

(9)

The delta function allows a non-zero value only when t t 2

thus

R'(t, -t) R p(0)(N0 /2) 6 (t - t2)

- 0 /2) 8 (t2 -t2 )

(10)

Therefore, n'(t) is WGN. This is supported by Ziemer and

Tranter in their work showing that any linear operation on a

Gaussian process yields a Gaussian process (Ref.28:305). The

problem is thus reduced to a threshold detection problem of

determining whether 9 o or H 1 is true using binary antipodal

signaling in WGN. The probability of error P(E) is given by
19



P()-erfo
1111

where the message bits are assumed equally likely and where

the compliment error function (erfc) is given by

erf() - J f e 2mp (-e /2)-

(12)

Therefore, for WGN, the performance of a SS system is

identical to a conventional system.

The performance characteristics of an SS system become

obvious in the presence of a strong, narrowband, interfering

signal centered about the carrier frequency. Assume the

interfering signal, I(t), to be zero mean and Gaussian with

a PSD, S I(w), as illustrated in Figure 4. Also, assume the

interfering signal to be uncorrelated with the PN code. The

analysis would be incorrect for a repeat jammer because of

the correlation between the PN code and jammer.

The received signal is now given by

Rit) - S(t)+'(t)+I(t)

(13)

further,
20
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Figure 4. Power Spectral Density of interfering SIgna, 1(t).

.rZ-E-/T d(t)PN2(tJCOS(a, to+P [.PTIW]

- 2IT d(t)COS( 0t).n" It)
(14)

Multiplication of the received signal by the reference PN

code strips the code off the signal and reduces the

interference as qualitatively illustrated in Figure 5.

Figure Sa shows the relative spectra of the received signal

and interference. Multiplication by the reference Pi code

produces the spectra qualitatively depicted in Figure 5b at

the input to the correlation detector. The message signal

bandwidth is reduced from W (the PM code bandwidth) to B (the

original message bandwidth), while the interference energy is

spread over a bandwidth exceeding W.

The autocorrelation of n"(t) Is given by

21
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Figure 5.Spectre of Desired Signal and Interference
(a) Received Signal
(b) Correlation Detector Output (Ref. 24:27).

" (t2st2 ) n - ( I )n" t

m E $ PN(tI)PN(t2 ) 
• rl n C, ,)+.T(, ] [nrt,)+.T<, )] !

(15)

R''(ty t 2) - Rff(t 2 -t ) [r I Rt 2 rn't,) *E jn(t21 (t 2 )I
+LP I xt1 t2rQ )1 +E I rr 2t2 ) 11Q

(16)

Because n(t) and I(t) are independent of each other, the

autocorrelation can be vritten as
22



R (t1 *t) 1 R(t 2 -t [2 1 (t2-t .RX1( 12-t,) (17)

The autocorrelation of the interfering signalf R1 (r), is

found by taking the inverse Fourier transform of S (w) with

r- t 1 -t 2 , that is

2'0B/2

S, U%2 e "O) d-1 ,,0oB2 (J12o/ of' , d-r.

0 BOgin (7Br) CoOT)
TB'r (18)

The autocorrelation of n"(t) then transforms to the

following:

R,(T)'RP ( p.r) (No/2)8 (F) RM( ) (. O a.0'i B'r)B COS(.O.t)

(NO2) (T+jV )JOsi(lYPT) c

(19)

For the case of narrowband jamming, B-0 ; thus R"(T) reduces

to the following:
23



SRt t T)(No/2) 6 ( )+RPN( Jo COS o(20)

The PSD of n"(t) is given by

St 1(4)) -f: (%/12) 6(r)*e3 " T &r + j RpN(T)JOCOSVWhi'rwe'4'

- " o , " + (, ( 4 ) 0  s i n ,

+ (*) J0TC i [(WO w2,a]
[,., T0 /2] 2

(21)

S"(w) is illustrated in Figure 6. The bandwidth of PN(t)I(t)

is much wider than the bandwidth of PN(t) - s(t) because the

data pulse duration, T, is typically several orders of a

magnitude greater than the code pulse deviation, TC * Over

the message bandwidth, the PSD of PN(t) • I(t) is

approximately flat and is processed by the correlation

detector as an additive WGN term. Using this approximation,

the PSD of n"(t) becomes

s,,r() - Mo12) + (J;/ 12)

(22)
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FigureS. Power Spectral Density of n(t).

The probability of error, P(E), in deciding if the

transmitted message was a plus one or a minus one, is given

by

P[(E) - erfo [42E/(% "0T0 ) ]
(23)

The improved performance due to SS techniques can be

determined by comparing the above P(E) with the case when no

PN code is used.

If a PN code is not utilized in the system,

corresponding to the case when PN(t) - 1 , then the

autocorrelation of the noise as BO becomes

25



R"() - 1/2) 6 'r) + J0 COS (Wor) (24)

and the PSD of the noise becomes

S''(W) - (VNO2) + o0 /2 6(WOa1) +.T/2 6 (up- & () (25)

The mean and variance of the sufficient statistic, e,

must be found in order to determine the P(E) for this case of

no PN code. From the communications system model of Figure

1, the sufficient statistic becomes

T
- RI(t) NfEIT COS (wot)dt

w 2 EA d (t) Cos2 ( ,0 t) dt + V-- (t)Cos(wt)dt0 'JO0

+ - T (t) COS (Ot) dt (26)

The conditional means are given by

E e/iH4 2ET f " LP IdWIt)/I CS Nos t) dt

+ * ' ~Iif 'L Es ~t/NO C0S (w t ) dt

+*f2/ LE ~I M)/R 0  COS (awt) dt

2 LP/wf Y COS 2 (wt)dt E (27

627)

. 26



and similiarly

(28)

The conditional variances of the sufficient statistic are

equal (Ref.25:177), that is

Var e/HO) - Var E/H)

1 2 E/2 TfTf/ R,,u)COS(O)CO${'ou)dtdu

W (E/ 2) + (E.T0 /2) 92)

(29)

Therefore, the PDF of the sufficient statistic is Gaussian

2with mean o or 1' and variance a The P(E) in estimating

the correct message sent is as follows:

P(F) - P(e>o/i )P.I(I) + P(e*O/HO)P(H )

2 0

(30)
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or

P(E) - P(towil l )

erfo [VVE_ v]o =

(31)

Equations (23) and (31) are now compared to show the

effect of the PN code on system performan-e. If N0 is

considered negligible, then the effect of the narrowband

interference on the system performance was reduced from J T
0

to JoTc . The improvement gained through this use of a PN

code can be expressed as the ratio

JOT 2'.y "  "--- m PG

(32)

and is called the processing gain (PG) of the SS system.

Since the RF transmitted bandwidth equals l/T c , and the data

bandwidth equals l/T, PG can be equivalently expressed as

%F /data

The above analysis depicts how a SS system achieves

interference rejection, and that the PG is the quantitative

measure of this capability. Thus, a SS system can operate at

the lower signal-to-noise ratio
28



(33)

where (S/NNJata is that needed by a conventional

receiver for the same message modulation. The receiver can

operate at very low S/N ratios if PG is large.

The principles of SS systems that have been presented

in this section should be adequate to present to the reader

the technical basis of SS for this thesis study. In the next

section, further interference suppression techniques will be

presented which complement the interference suppression

capability already inherent in SS systems.

29
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Further interference rejection in a SS system can be

realized by the insertion of a pre-detection filter. An

adaptive pre-detection filter in its basic form is a device

which adjusts its internal parameters and optimizes its

performance according to the statistical characteristics of

its input and output signals. The internal parameter

adjustment is accomplished via a series of variable settings

controlled by an adaptive algorithm (Ref.27:616).

Several devices, other than SAW devices, have been

considered for application to the interference rejection

problem. They are charge-coupled devices (CCDs),

magnetostatic wave (MSW) devices, and acousto-optic devices.

Alternative Technologies

Since its beginning in 1969, the CCD has been used for

many applications including signal processing, optical and

infared imaging, and digital memory applications (Ref.9:392).

The CCD device easily adapts to implement transversal

filters, however, the disadvantages of the CCD approach are

the lower frequency of operation and the tolerance on sample

time required for wide bandwidth and high dynamic range

(Ref.22:2-3). Further, the external circuitry required for

programming the filter tap weights would make up

30



approximately 90 percent of the programmable transversal

filter (PTF), creating a problem for its construction into a

monolithic chip. It is clear then that the CCDs projected

performance in the forseeable future is far below that

required for PTFs and wideband interference suppression.

Magnetostatic waves are slow, dispersive, magnetically

dominated electromagnetic waves which propogate in

magnetically biased ferrite materials at frequencies of

1-20 GHz (Ref.14:506). These MSWs can be exploited in

devices offering instantaneous bandwidths of up to 2.2 GHz at

microwave center frequencies from 0.5 to 20 GHz (Ref.14:506).

MSW devices have lower propagation loss than SAW devices,

however, below 3 GHz SAW devices are superior. At present,

MSW devices are not suitable for interference suppression,

and they are still in the research and development stage.

Acousto-optic spectrum analysis techniques have become

popular in the past few years as low cost, small size methods

of performing spectral analysis on wideband signals with high

probability of interception. These methods are applicable to

intercept and radar warning receivers, but in communications

receivers, dynamic range is severely limited due to optical

scattering (Ref.22:2-4). Decoding of SS waveforms becomes

impossible because phase information is not available at the

detector output unless a complex holographic system is

employed. Although acousto-optic spectrum analyzers possess

acceptable frequency and bandwidth characteristics, the
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limited dynamic range and absence of phase information in the

analyzers appropriate for adaptive interference suppression

renders acousto-optics inappropriate for the filtering

operation under study in this thesis effort.

SAW - Programmable Transversal Filter Technology

SAN devices possess characteristics that make them a

robust choice for programmable transversal filter (PTF)

implementation in SS systems. The SAW AIS filter has the

potential to revolutionize the field of partially secure,

antijam communications. Adjustable tap weights on this

device allow any transfer function (bandpass or bandreject

response) within the overall bandwidth and time duration of

the device to be realized. A SAW PTF model has been

constructed by Texas Instruments to cover the frequency band

200-300 MHz with a minimum resolution of 12.5 MHz

(Ref.22:2-4). This PTF can be converted to an AIS filter by

implementing measurement and feedback paths to iteratively

alter the frequency response which selectively suppresses

undesired waveforms. Selection of an adaptive algorithm to

accomplish the measurement and feedback functions was carried

out by Texas Instruments. Four classes of algorithms exist

in the literature which can perform the required adaptive

filtering, however because of hardware constraints imposed by

the PTF, certain algorithms are more suitable for use in this

application than others. A computer simulation model of the
32



existing breadboard PTF enabled Texas Instruments to choose

the AIS algorithm which best exploits the advantages of the'

existing technology and minimizes the effects of device

limitations.

The steepest descent (Refs.l,2,6,10,26,27) class of

algorithms, in particular the Applebaum and the power

inversion algorithms, are considered by Texas Instruments as

the most suitable for AIS PTF implementation for the reasons

stated in the assumptions sub-section of section I. A survey

of the four classes of adaptive algorithms presenting their

basic characteristics, advantages, and disadvantages is given

in Appendix A.

SAW Device Theory

Elastic waves are the basis for SAW filter operation

because they travel in suitable solids with negligible loss

and at velocities, typically, of 103 to 104 meters-per-second.

This leads to operating frequencies of from 30 to 800 MHz for

practical SAW filters (Ref.12:l).

SAW technology has reduced the size and weight of

filters because surface waves travel at velocities four or

five orders of magnitude lower than electromagnetic waves.

This reduction in size is proven with typical values of wave

velocity, v, and frequency, f, as follows:

For elastic waves the intertap spacing, X is given by
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~V/f 3000 rn/:ec -o300 MB =z~ p

(34)

For electromagnetic waves X is given by

3 x 108 m/aee M
300 MHz

(35)

Rayleigh waves are the type of elastic waves employed

in SAW filters because they can propagate along the free

surface of a solid and still remain confined to the vicinity

of that surface. If the solid is piezoelectric, then an

elastic wave traveling on its surface produces an electric

wave so that a traveling electric field extends above the

surface and can interact with any metal electrodes on its

surface (Ref.12:l). This generation of an electric field is

the "piezoelectric effectO and is formally stated as follows:

In certain crystals, mechanical strain produces a

proportional electric polarization and, conversely, an

applied electric field produces a proportional mechanical

strain (Ref.12:5).

SAW waves are generated and detected by means of an

interdigital transducer (IDT). The IDT is made up of metal

contacts periodically spaced on the surface of a
34



piezoelectric material (or substrate). A basic SAW device is

shown in Figure 7. The typical width of each electrode is

X/4, the spacing between adjacent electrodes is X/4, and the

spacing between alternate electrodes is A where X equals the

wavelength of the substrate (Ref.9:390). When a radio

frequency (RF) voltage is applied to the input IDT, electric

fields are set up within the substrate and these electric

fields generate stress patterns via the piezoelectric effect.

Therefore, the substrate has elastic waves traveling in both

directions normal to the electrodes. The output IDT,

employed for the detection process, utilizes the same

configuration as the input IDT.

IDT i

Fligure 7. Typical SAW Dovleo (Ref. :3SO).

The SAW-PTF under study in this thesis is one of the

filters presently under study by Texas Instruments. The

existing SAW filter is based on a lithium niobate (LiNbO 3)
35



substrate consisting of a conventional wideband input IDT at

250 MHz and a 16 tap output electrode array which samples the

SAW at a 200 MHz rate (Ref.22:2-10). The sample rate of

200 MHz was chosen from the concept of sub-harmonic sampling.

That is, the sample rate equals twice the usable bandwidth of

the filter, or 2 X 100 MHz. The programmability of this

tranversal filter allows a single filter to operate as a

bandpass, band-reject, adaptable, or matched filter.

It should be pointed out that although silicon (Si) or

LiNbO based technologies provide high levels of integration,
3

even higher levels of integration and speed are needed for

microcircuit applications in the late 1980s and 1990s. Also,

there has been some concern about the levels of natural and

nuclear radiation hardness not achievable with Si

microcircuits, especially in those deployed in space

applications. Gallium arsenide (GaAs) based technologies are

being developed to afford the electronics engineer with the

capability of higher speed, more integrated, and greater

radiation hardened microcircuits than is presently available

with Si or LiNbO devices (Ref.17:76-78).3

The operation of the PTF consists of four parts. The

four parts are SAW excitation, SAW detection, tap weightig,

and tap weight distribution. A SAW is excited via a wideband

input IDT. The wave is sampled once each wavelength by a

detector array of 1/200 MHz = 5 Nsec spaced output

electrodes. The PTF detector array is illustrated in Figure 8
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with ground electrodes removed for clearness. The sampled

RF potential in each tap is amplified and weighted before

being summed with the other tap signals. This amplification

and weighting of the RF signal is accomplished through the

use of dual-gate field effect transitors (FETs). Each output

electrode is connected to the high frequency gates of two

dual-gate FETs, one for each phase. The RF potential is

applied to the first gate (inner gate) of the two dual-gate

FETs, and the individual tap weight control voltages are

applied to the second gate (outer gate). The FETs are

connected sequentially to two drain buses. One drain bus

being positive, and the other being negative. The FETS

choose which bus the RF potential is sent to, and also allow

for variable tap weight amplitudes. If the upper FET control

gate voltage is increased (e.g. biased on), then a positive

weight is produced. On the other hand, if the lower control

gate voltage is biased on, then a negative weight is

produced.

The key to realizing an arbitrary frequency response,

that is a fixed bandwidth sinx/x function, with a SAW filter

is to determine the appropriate weighting voltages of the IDT

electrodes. Because the SAW filter can be thought of as a

discrete time sampling device with finite impulse response

(FIR), the large body of digital filter theory can be applied

to SAN filter design (Ref.20:132).

The PTF under study has achieved the translation of
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its sinx/x frequency response to any center frequency from

200 to 300 MHz. This frequency response translation is

illustrated step by step in Figure 9. An infinite set of

delta functions in the time domain transforms to an infinite

set of delta functions in the frequency domain, but separated

by the inverse of the time sample (at). The PTF under study

has 16 time domain samples, or tap weights, so the infinite

set of time domain delta functions are time gated to 16 delta

functions as shown in Figure 9b. This time gating transforms

to the sinx/x response in the frequency domain. Control over

placement of these sinx/x responses is accomplished by

modulating the tap weights with a slowly varying cosine

function whose frequency equals the difference between the

spatial sampling, f = 200 MHz, and the desired center0

frequency, f . This modulating by a cosine function is shown
C

in Figure 9e. The frequency range of interest is then

bandpass filtered as shown in figure 9f.

The tap weights in the time domain are given by:

h( n - COS[ .t (f-fO]

(36)

where t n n'At. A sample tap weight weight calculation for an

275 MHz center frequency is as follows:
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Figure 9. PTF Frequency Translation

(a) An Infinite Set of Time and Frequency
Domain Delta Functions

(b) Time Window Function
(c) Gated Delta Functions
(d) Multiplication by cos(2vr(fe-fo)t)
(e) Cosine Modulated Tap Weights
(f) Filtered Frequency Domain (Ref. 22:2-13).
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h t)- COS [2RvU.t (275-200)]

W COS [zn 75/200)

W COS [Es/4 J

- 2.0, -0.707, 0.0, 0.707, -1.0, 0.707, 0.0, -0.707, etc.
(37)

A hybrid PTF has been designed and built by Texas

Instruments on a LiNbO3 substrate. The experimental tap

weight linear control range was found to be greater than

40 dB. This is illustrated in Figure 10 where normalized RF

output voltage from the dual-gate FET drain is plotted as a

function of offset control gate voltage from gate #2. Also,

the tap switching speed, from +1 to -1, was found to be

approximately 100 ns (Ref.22:2-12).

Programmable Transversal Filters Utilizing Adaptive
Interference Suppression Techniques

As mentioned previously, four classes of adaptive

algorithms exist which can be implemented to iteratively

"null out" jamming and/or interfering signals in

communications systems. The steepest descent class of

algorthms, in particular the Applebaum and Power Inversion

algorithms, were chosen for implementation to perform the

adaptation because of their minimization of both hardware

constraints and convergence time (Ref.22:2-21).

Several configurations for implementing steepest

descent algorithms with the PTF have been considered.
41
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Figure 10. Top Weight Control Range (Ref. 22:2-16).

Basically, there are two types of approaches; one involves

access to individual tap outputs while the other does not

provide for individual access to tap outputs.

The configuration which utilizes access to individual

tap outputs employs a processor for each tap and can thus

realize simultaneous adjustment of all tap weights as
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illustrated in Figure 11. Simultaneous tap weight adjustment

creates the advantage of fast adaptation time, however, it

introduces the difficulty of simultaneous equalization and

hardware complexity. Further, the increased hardware

complexity required for individual tap access to the 200-600

tap PTFs of the near future would make this configuration

impractical.

Figure 11. Configuration Utillzing Access t ~lolidual Tap Outputsl
for Simultaneous Tp Wight Adjutment (Ref. 32:2-26).

Abetter configuration which does not require access

to individual tap outputs is illustrated in Figure 12.

Adaption is accomplished using the PTF output which creates

the disadvantage of this configuration in that 
the filter

response is not available during adaptation.

Texas Instrument's proposed baseline adaptive PTF

configuration and the one chosen for study in this thesis

utilizes two PTFs as shown in Figure 13. One PTF is employed

to both monitor interference and compute the desired tap
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TAP W914W4SW

Figure 12. Configuration Utlizing s Single PTF Without Access
to Individual Tap Outputs (Hef. 22:2-27).

weights for the other PTF, which is utilized for interference

suppression. This overcomes the limitation of the previous

configuration in Figure 12 by allowing for access to the

filter output while the adaptation is taking place.

The full scale propcsed adaptive PTF configuration is

illustrated in Figure 14. The main PTF is implemented with

complex weights and consistc of two PTFs. The incoming RF

signal is split into its in-phase (1) and quadrature (0)

components by a quadrature hybrid 3 dB splitter. In this way,

both the in-phase and quadrature channel PTFs are implemented

with real weights. The complex weight implementation

produces an improved nulling capability, minimum distortion

in the adapted response, and doubles the usable bandwidth of

the filter for constant intertap delay. The weight vector

driving this filter, via the data processor, consists of a

superposition of quiescent weights and perturbation weights.
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Figure 13. Configuration Utilizing Two PTFs: One For
Interference Monitoring and One For Adaptive
Interference Suppression (Ref. 22:2-27).
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The quiescent weights are selected for the Applebaum

algorithm, based on the desired signal spectrum, to produce

the desired frequency response of the filter. That is, the

quiescent weights use some form of "a priori" knowledge about

the desired signal. The perturbation weights are selected

and are continuously altered due to the adaptive algorithm to

place notches or band-stops in the spectral regions of the

jammers or interfering signals.

The auxiliary transversal filter is identical to the

main transversal filter in theory. This filter permits

access to the RF signal at any of the taps by setting the

gain at the desired tap to unity and the gain of all other

taps to zero. The use of the auxiliary filter allows for

sequential implementation of the least mean squared (LMS)

algorithms in the time domain without direct access to

individual taps in the main filter. Further, this filter can

be utilized in the frequency scanning mode of operation to

allow implementation of the LMS algorithms in the frequency

domain, that is, the filter continuously scans the input RF

signal searching for a change in interference statistics.

The configuration for implementation of several adaptive

algorithms in either the time or frequency domain is

illustrated in Figure 15.

The correlation module performs a cross-correlation

between the outputs of the main and auxiliary filters. The

correlation output is sampled resulting in a component of the
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gradient vector (see Appendix A for a theoretical explanation

of the gradient vector) which incidently determines the

perturbation weights. For each iteration of the adaptive

algorithm, the complex valued components of the gradient

vector are estimated by sequencing through each of the tap

outputs for the time domain, or by sequencing through each of

the frequency passbands for the frequency domain.

The data processor performs the necessary operations

to output three types of weighting vectors. The first type

is the quiescent weight vector for use in the main filter to

produce the desired frequency response characteristics of the

filter. The second type is either the frequency scanning

weight vector (utilized in the frequency domain) or the tap

element multiplexing weight vector (utilized in the time

domain) for use in the auxiliary filter. The third type is a

perturbation weight vector (modified version of the estimated

gradient vector from the correlation output) for use in

addition to the quiescent weight vector in the main filter.

These modifications to the estimated gradient vector

to produce the perturbation weight vector as mentioned above

are of three types: first is a scaling of the vector to

achieve both loop stability and acceptable adaption time;

second is an iteration-by-iteration dithering of the vector

direction and magnitude to increase steepest descent

acceleration; and third is the transformation of the gradient

vector from the time domain to the frequency domain if the
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auxiliary filter is used in the frequency scanning mode of

operation (Ref.22:2-30).

Implementation of the Applebaum AlQorithm
in the Frequency Domain

Implementation of adaptive algorithms in the frequency

domain can increase the convergence rate as explained in

Appendix A. The configuration for implementation of several

adaptive algorithms in the frequency domain is illustrated in

Figure 15. For the case of the Applebaum algorithm, the tap

weights of the main filter are set to give the desired

passband and stopband frequency response characteristics

while the auxiliary filter is set in the frequency scanning

mode. The region scanned by the auxiliary filter is

separated into distinct passbands where a portion of these

bands are associated with the desired signal spectrum and the

others with possible interference signals. The passbands

that make up the desired signal spectral region can either be

used in the interference suppression operation or bypassed

altogether to prevent any suppression of the desired signal.

At any passband position, ± , the output of the auxiliary

filter, z (t), is correlated with the output of the main

filter, y(t), and this result is scaled by the loop gain

constant, a . The data processor outputs a perturbation

weight vector whose elements are given by
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6 -OZ. () 2r(n-1)f

20 8, -.-0 N (38)

where A is the tap delay, fi is the scan frequency, Y(t) is

the main filter output signal, * indicates a finite time

integration, and N is the number of taps. This perturbation

vector is added to the previous weight vector in the main

filter for each ith passband region.

Several techniques can be utilized to enhance the

convergence rate of this algorithm, that is to decrease the

number of iterations required to suppress the interfering

signals. For instance, frequency scanning across the

spectrum can be performed tc estimate the strength of the

interfering signal components. A strategy can then be used

to scan through only those spectral regions where interfering

components exist. Finally, one passband at a time can be

made to adaptively suppress the inband interference before

scanning to the next passband.

Consideration of Alajorit M Adaption Time

The amount of time required for an adaptive algorithm

to establish an adapted state for a new spectrum or jamming

signal is termed the adaption time. It is essential to

minimize this time, especially in a wartime scenario, since

the purpose of the communications system is to rapidly get an

understandable message to the intended receiver.
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Several factors must be considered when attempting to

minimize adaption time.

- An adaptive algorithm with rapid convergence must
be employed.

- Measurement of the required algorithmic data must
be fast and efficient.

- Computation of the tap weights must be fast and
efficient.

- Implementation of the modified weights must be fast
and efficient.

The most effective way to decrease adaption time would be to

directly adjust individual taps, however, as was mentioned

earlier, it would be impractical to provide direct access to

the 500 tap PTFs of the near future. Alternatively, external

estimation of the interference spectrum followed by the

required tap weight adjustments necessary to suppress this

interference can be implemented. Further, referencing of

stored previous tap weights for a given bandpass can be

performed to minimize the number of iterations and thus

adaption time.

The next section will be concerned with improved

system performance by keying in on minimization of the

desired signal degradation as well as minimization of

algorithm convergence rate. An analysis of a SS

communications computer simulation with the AIS-PTF included

will be presented to achieve the above goals.
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IV. Analyeis of Adaytive Interference SOPPresuion

This section deals with the performance of the AIS

filter. The improvement in SS system performance when

utilizing the AIS filter is determined in terms of the SNR at

both the input and output of the correlation detector. SNR

is the most convenient performance index for obtaining

numerical results. Additionally, a number of other

characteristics of the AIS filter and its implementation in a

SS system are analyzed. Namely, its frequency response

(before and after filter adaption), the receiver correlation

response (before and after adaption), the pre-detection

signal plus jammer plus noise spectrum (before and after

filter adaption), and its convergence rate.

To the extent that it is possible, an analytical

evaluation of a particular combination of modulation,

spectral spreading, jamming, AIS filtering, and demodulation

schemes will provide an engineer with much insight into the

improved system performance that can be gained through an AIS

filter. However, analytical evaluations are usually not

adequate enough to analyze a complete SS system under all of

the expected modes of operation that might be encountered in

real life (Ref.5:2). It is obvious then, that one way to

evaluate a SS system under all the expected modes of

operation is to build it. However, this alternative can be

quite costly. Still yet another alternative is to create a
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set of software packages which can act as a SS communication

simulator. This was the alternative chosen for this thesis

effort. The analysis that follows is based on computer

generated data.

A description of the communications simulation along

with system simulation flowdiagrams is given in Appendix B.

It should be noted that computer simulation models are

usually exploited during early stages of system design and

development where a scaled model may be used. In later

stages, a simulation model of an entire SS system would

require a prohibitive amount of computer time and memory

(Ref.23:1081).

Pre-Detection SNR Improvement Due to AIS Filter

In order to demonstrate the effectiveness of the AIS

filter, the pre-detection SNR of the receiver is compared

with and without the suppression filter for various user

entered parameters in the computer simulation. A summarized

list of the computer parameters is given in Table I where

several abbreviations are used: power inversion (PI),

Appleb&um (A), time (T), and frequency (F). Also, Cases 20

through 22 are used to assess the transversal filters

performance with nominal filter fabrication and circuitry

errors. Tap weight word length (quantization error) has been

considered in all 22 cases. The remaining four errors under

consideration are explained with the use of Figure 16. The
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An1  Wn±y,1 (40)

where W is the quantized tap weight and Y is the tap weight
n n

error for a given tap. The summing delay error is

represented as 6 for a given tap. The phase error betweenn
the in-phase (I) and quadrature (0) channels is represented

as O.

The pre-detection performance without the filter is

obtained by passing the desired PN spread spectrum signal

plus jamming through the filter with its quiescent tap

weights set to an all-pass response. The computer generated

value of SNR prior to the first iteration of the adaptive

algorithmm is the SNR of the signal plus jammming passed

through the filter with an all-pass response.

Pre-detection SNR is computed in the computer

simulation in terms of signal-to-jamming ratio (SJR). The

computer generated value of SJR (calculated in the main

program; see Appendix B) does not include the band limited

Gaussian noise (BLGN) power. To do so would require much

more computer memory and processing time. However, BLGN with

bandwidth equal to the signal bandwidth is impressed on the

SS signal (in subroutine SPS; see Appendix B) after the

filter tap weights have been calculated in the main program.

BLGN can be seen on the signal plus jammer plus noise figures

in this section. Also, the correlation response includes the
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Figure 16. PTF Devicoe Model

errors are introduced in the simulation as Gaussian random

variables as can be seen in subroutine PTF of Appendix B. The

intertap e:lays, D , have errors associated with each tap as

nn

represented in the equation

(39)

where A is the correct intertap delay equal to 5 Nsec andi

ais the intertap delay error for a given tap. The tap
n

weight generation errors are represented in the equation
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effects of BLGN since correlation is just the product (in the

frequency domain) of the signal plus jammer plus noise

spectrum with a replica of the desired signal.

It should be noted that from earlier research on

adaptive arrays discussed by Schewegman and Compton

(Ref.18:9), the depths of the nulls formed in the filter

response are limited by system input noise, quantization

error, and filter fabrication and circuitry error. The error

contribution due to system input noise is of the same order

of magnitude as the combined quantization and implementation

errors. Therefore, neglecting the system input noise in the

calculation of the adapted filter response will cause an

error in the maximum null depth of about 3 dB.

Interference suppression due to the AIS filter does

not include the processing gain (PG) of the SS signal

correlator. The spread spectrum PG .s due to the matched

filter correlation operation which spreads the interference

and despreads the desired signal in frequency. Further

interference suppression provided by the PG of the SS signal

correlator will be discussed in the next section.

There are many combinations of the user entered

parameters, as can be seen in Table V of Appendix B. Some of

the more relevant combinations of input parameters (as

summarized in Table I) are used to produce the following

system performance results.

The computer generated values of SJR both before any
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filter adaption occurs and after 35 iterations of the

adaptive algorithm are listed in Table II for the 22 cases.

Also, the AIS filter pre-detection improvement factor (IF),

defined as the difference between the post-adaption and

pre-adaption SJRs, is given in Table II for the 22 cases.

All jammers are CW and have a power level of 30 dB greater

than the signal.

The pre-adaption signal plus jammer plus noise

spectrum for Case 1 is illustrated in Figure 17. The CW

jammer is seen to be located out-of-band, that is, the center

frequency of the jammer is greater than 10 MHz (the PN clock

frequency) from the SS signal center frequency of 250 MHz.

It is believable that an out-of-band jammer should have a

less detrimental effect on the desired signal than an in-band

jammer. This is shown by comparing the post-adaption SJR for

Cases 1 and 2. The quiescent PTF response for the power

inversion algorithm is initially set for an all-pass response

to pass the desired wideband PN signal. The algorithm

produces this all-pass response by setting the center filter

tap weight to unity gain and all other tap weights to zero as

explained in Appendix A. The algorithm iteratively adjusts

the filter tap weights to place a null on the jammer. The

adapted filter response after 35 iterations is illustrated in

Figure 18 with a null at 222 MHz. The post-adaption signal

plus jammer plus noise spectrum is shown in Figure 19.

Comparing with Figure 17, the total jammer power is seen to
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Table II

Pre-detection SJR Before and Aft'- .. ilter Adaption

and Improvement Facto,

Pre-adaption Post-adaption Pre-detection
Case # SJR(dB) SJR(dB) IF(dB)

1 -30.0 18.6 48.6
2 -30.0 2.8 32.8

3 -30.0 18.6 48.6

4 -30.0 2.8 32.8

5 -30.0 18.8 48.4

6 -30.0 10.5 40.5

7 -30.0 3.3 33.3

8 -30.0 18.6 48.6

9 -30.0 -30.0 0.0
10 -30.0 -12.0 18.0

11 -30.0 -10.0 20.0

12 -30.0 - 8.0 22.0

13 -33.0 - 9.7 23.3

14 -33.0 - 7.2 25.8

15 -33.0 7.8 40.8

16 -33.0 2.0 31.0

17 -34.8 -16.6 18.2

18 -34.8 1.3 36.1

19 -34.8 - 2.0 32.8

20 -30.0 - 5.6 24.4

21 -33.0 3.3 36.3

22 -34.7 1.0 35.7
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be decreased.

The pre-adaption signal plus jammer plus noise

spectrum of Case 2 is illustrated in Figure 20 where the

jammer is seen to be in-band. The adapted filter response

after 35 iterations is illustrated in Figure 21 with a null

at 246 MHz.

The post-adaption values of SJR for Cases 3 and 4

remained the same as Cases I and 2, respectively, even though

the SS signal bandwidth was increased to 50 MHz. However,

there is a decrease in performance of Case 3 over Case 1 and

an increase in performance of Case 4 over Case 2 at the

correlation detection output, as will be seen in the next

section.

The adapted filter response for Case 6 is illustrated

in Figure 22 with a null at 246 MHz. A major factor causing

the increase in performance of Case 6 over Case 2 is the 3 dB

width of the null. The 3 dB width of the null for Case 6 is

about 8 MHz as can be seen in Figure 22. The 3 dB null width

for Case 2 is about 21 MHz, as can be seen in Figure 20.

There is a greater desired signal degradation in Case 2 than

in Case 6 as a result of the increased null width and a

subsequent filtering of more signal for Case 2.

The adapted filter response for Case 7 is illustrated

in Figure 23 with a null at 246 MHz. There is a slight

increase in performance of Case 7 over Case 2. This is due

to the null of Case 7 being 60 dB down as opposed to the null
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V

of Case 2 being 50 dB down. The frequency domain

implementation of the adaptive algorithms, as discussed in

section III, divides the usable filter bandwidth into several

quasi-orthogonal channelized passbands. Since the

channelized passbands used to synthesize the adapted filter

response are not completely orthogonal to each other, the

null depth obtained for the frequency domain algorithm is

limited. As a result of this degradation, the null depth of

Case 2 is 10 dB less than the null depth of Case 7. Also for

this same reason, there is a significant increase in

performance of Case 8 (implemented in the time domain) over

Case 6 (implemented in the frequency domain).

Case 9 involves a jammer whose center frequency is

located at the center frequency of the SS signal. A jammer

at this location wreaks havoc on the receiver. The AIS

filter is unable to adapt a null on the jammer, and the SJR

remains around -30 dB. Because the power inversion algorithm

initially sets the center tap weight to unity gain and the

remaining taps to zero, it was thought that this symmetric

setting of weights might affect the adaption on a centrally

located jammmer. However, implementation of the Applebaum

algorithm with the first filter tap weight set to unity and

the remaining taps set to zero revealed the same results on

the filters inability to adapt on a centrally located jammer.

However, if the CW jammer is impressed 1 MHz or more away

from the SS signal carrier frequency, the AIS filter is able
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to adapt a null on the jammer to provide improvement as

demonstrated in Cases 10 - 12 of Table Ii.

The pre-adaption signal plus jammer plus noise

spectrum of Case 13 is illustrated in Figure 24 where it is

seen that one CW jammer is located in-band and the other is

located out-of-band. The adapted filter response is

illustrated in Figure 25.

When the SS signal bandwidth is increased to 50 MHz,

as in Case 14, the SJR improves slightly for the same jamming

signals as Case 13.

The adapted filter response for Case 15 is illustrated

in Figure 26. A major factor causing the increase in SJR

performance in Case 15 over Case 13 is the 3 dB width of the

nulls. The Applebaum algorithm of Case 15 is able to achieve

3 dB null widths of about 9 MHz, whereas the power inversion

algorithm of Case 13 is able to achieve 3 dB null widths of

about 16 MHz. The post-adaption signal plus jammer plus

noise spectrum is illustrated in Figure 27 where the total

jammer powers are seen to be suppressed from their original

powers in the pre-adaption signal plus jammer plus noise

spectrum of Figure 24.

A comparison of cases 15 and 16 reveals that a time

domain implementation of the Applebaum algorithm does not

perform as well as a frequency domain implementation of the

Applebaum algorithm for the case of two jammers. However, it

is suspected that if the algorithm is allowed to adapt for
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more than 35 iterations, then the time domain implementation

will yield increased performance over the frequency domain

implementation as was the case for one jammer.

The pre-adaption signal plus jammer plus noise

spectrum of Case 17 is illustrated in Figure 28 where it is

seen that one CW jammer is located in-band and the other two

are located out-of-band. The adapted filter response is

given in Figure 29. The post-adaption signal plus jammer

plus noise spectrum is illustrated in Figure 30 where the

three jamming signals are seen to be suppressed from their

original powers in the pre-adaption signal plus jammer plus

noise spectrum of Figure 28.

The adapted filter response for Case 18 is illustrated

in Figure 31. A major factor causing the increase in

performance of Case 18 over Case 17 is the magnitude of the

lobes in the adapted filter response. The magnitude of the

filter response lobe between 245 MHz and 265 MHz for Case 17

is 17 dB down from that of Case 18. Thus, more desired

signal is filtered in Case 17. Also, the average 3 dB width

of the nulls for Case 18 is about 10 MHz as opposed to about

14 MHz for Case 17.

A comparison of Cases 18 and 19 reveals that a time

domain Applebaum implementation does not perform as well as a

frequency domain Applebaum implementation for the case of

three jammers. However, it is suspected that if the

algorithm is allowed to adapt for more than 35 iterations,
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then the time domain implementation will yield increased

performance over the frequency domain implementation as was

the case for one jammer.

Cases 20 through 22 are used to assess the transversal

filters performance with nominal filter fabrication and

circuitry errors. The nominal filter errors chosen for these

cases are 8 bits for tap weight word length (quantization

error), an = random intertap delay error from a normal

distribution with 0' = 0.017 Nsec, Yn = random tap weight

generation error from a normal distribution with dyn w 0.05Wn

6 = random summing delay error from a normal distribution withn

0n " 0.03 Nsec, and A = 5% for the phase error between the

I and Q channels. In each case, the post-adaption value of

SJR calculated with nominal filter errors is less than its

respective value of SJR calculated without filter errors. A

factor causing this decrease in performance is that the null

depths of the adapted filter responses with errors are

degraded from their respective responses without errors. For

example the adapted filter response for Case 21 is given in

Figure 32 where the null depths are seen to be degraded from

their depths in Figure 26.

Post-Detection SNR Improvement Due to the AIS Filter

In order to determine the post-detection effectiveness

of the AIS filter, the post-detection SNR is compared with
80
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and without the suppression filter for various user entered

parameters in the computer simulation. A summarized list of

the computer parameters for the 22 cases is given in Table I.

Post-detection performance without the filter is

obtained by passing the desired SS signal plus jamming plus

additive BLGN through the filter with its quiescent tap

weights set to an all-pass response. The signal plus jamming

plus BLGN is then correlated with a replica of the desired

signal to produce a pre-adaption correlation response. The

performance with the AIS filter is obtained by allowing the

filter to iteratively adapt to a frequency response which

places nulls on the jammers. The adapted signal plus jamming

plus BLGN spectrum is then correlated with a replica of the

desired signal to produce a post-adaption correlation

response. The performance with the AIS filter is then

determined from this correlation response in terms of SNR.

Post-detection SNR is measured in terms of

signal-to-jamming plus BLGN ratio (SJNR). The SJNR is

calculated from the correlation response plot as the ratio of

the magnitude of the correlation peak to the RMS value of the

correlation sidelobes on one side of the plot. Also, the

computer generated correlation plot is a normalized magnitude

plot in that the maximum value is normalized to a magnitude

of one. This normalization leads to relative or normalized

values of SJNR for post-detection improvement. Also,
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post-detection improvement can be determined on the basis of

whether or not there is a correlation, and on how high the

correlation sidelobes are relative to the peak. The higher

the sidelobes, the higher the probability that the detector

will make an incorrect decision about what message was sent.

Post-detection improvement is due to both the AIS

filter and the PG of the SS signal. The PG, as discussed in

Section II, is the ratio of the transmitted RF bandwidth to

the data bandwidth. The PG in the computer simulation is the

ratio of the number of samples per data bit to the number of

samples per PN code chip. The simulation generates 1000

samples/data bit. The number of samples per chip varies

according to the user entered value of signal bandwidth, or

PN clock frequency fc" For a 10 MHz signal, the number of

samples per chip, NBW, is given by

2 1
BW- (f) (DEL) (10 1Hz) (5 NeeN )

- 20 a wpZes/ehip
(41)

where DEL is the sampling time. For a 50 MHz signal, NBW is

given by

N) D - ewnpZe#/ohip

(42)
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Thus, for a 10 MHz SS signal, the PG is given by

PG- o000 wPZ/dta bit0"170
30 BCP"Oi dat m 2?d

(43)

and, for a 50 MEz SS signal, the PG is given by

PG = 1000 amzpZ.ee/dat bit 250 ohip , 24dB
4 umwpZe/chip data bt

(44)

The PG can also be expressed as a time-bandwidth product as

given by

PG-WTBi 100 Z8a)(Hec (,N)
(45)

A useful concept in SS communications is jamming

margin, JM, given by

J? - PG + GpT F - (S/N)OUT

(46)

where GPTF is the gain in interference suppression due to the
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AIS filter and (S/N) is the minimum output SNR required by

the detector for a proper decision. A typical value of JI

calculated for a 10 MHz SS signal is given by

.7 - 27 + 30 - 10 - 37dY

(47)

Equivalently, the SS system can continue detecting signals

even though the signals are 37 dB, but not more, below the

jamming.

The computer generated values of normalized

post-detection SJNR before and after filter adaption are

listed in Table III. Also, the normalized post-detection

improvement factor due to the AIS filter, IF, is given in

Table III. For the cases that yielded no pre-adaption

correlation, the SJNR and IF blocks are left blank, although

there is an improvement based on the fact that there is a

correlation peak in the post-adaption correlation response.

The pre-adaption correlation response for Case 1 is

shown in Figure 33. A correlation peak exists for this case

of an out-of-band jammer even without the AIS filter, that

is, before any adaption of the all-pass filter occurs to

place a null on the Jammer. This correlation without the AIS

filter is due to the ability of the PG of the SS signal to

satisfactorily spread the interference and despread the

signal. Improvement of SJNR is realized when the filter is
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Table III

Normalized Post-detection SJNR Before and After

Filter Adaption and Improvement Factor

Pre-adaption Post-adaption Post-detection
Case # SJNR(dB) SJNR(dB) IF(dB)

1 114.6 22.2 7.6

2 -6.3

3 6.o 20.2 114.2

14 3.7 114.8 11.1

5 114.6 22.3 7.7

6 -9.3
7 6.7
8 11.0

10 - 4.14

11 4.9

12 -5.8

13 -12.7
114 -17.1

15 -17.6

16 -13.9

17 -7.6

18 -16.5
19 -16.0
20 -2.9

21 -10.9

22 -8.2
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allowed to adapt on the jammer. The post-adaption

correlation response for Case 1 is shown in Figure 34 where

the correlation sidelobes are seen to be decreased.

For Case 2, and in-band jammer case, no correlation

exists without the filter as shown in Figure 35. The PG of

the SS signal is unable to satisfactorily spread the

interference and despread the signal. The sidelobes of the

correlation response are up in the threshold region,

therefore there is a high probability of false alarm (e.g.

incorrect decisions about what message was sent). The

post-adaption correlation response for Case 2 is illustrated

in Figure 36.

As seen in Table Il, there is a decrease in

post-adaption SJNR of Case 3 over Case 1, and an increase in

post-adaption SJNR of Case 4 over Case 2. These performances

are due to the PSD of the SS signal being spread, in Cases 3

and 4, to five times the bandwidth of Cases 1 and 2. Thus,

the out-of-band jammer of Case I becomes an in-band jammer in

Case 3, and the jammer in Case 4 is jamming less signal power

than the jammer in Case 1 since the magniutde of signal PSD

has decreased.

Case 9 investigates the performance of the AIS filter

with a CW jammer located at the center frequency of the SS

signal. The AS filter is unable to provide any improvement

for this jamming scenario. However, if the jammer is

impressed 1 MHz or more away from the SS signal carrier

Be
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frequency, the AIS filter is able to provide improvement as

demonstrated in Cases 10 - 12 of Table III.

T~:e pre-adaption correlation response for Case 13 is

illustrated in Figure 37 where there is no correlation. The

PG of the SS signal is unable to spread the two jammers and

despread the signal for proper correlation. However, when

the filter is allowed to adapt on the jammers, correlation

occurs as illustrated in Figure 38.

There is no correlation in Case 18 without the AIS

filter as seen in Figure 39. When the filter is allowed to

adapt on the three jammers, correlation occurs as illustrated

in Figure 40.

When nominal filter fabrication and circuitry errors

are introduced, Cases 20 - 22, the magnitude of the

post-adaption correlation sidelobes is increased from the

magnitude of the post-adaption correlation sidelobes for the

respective cases without errors. Thus, there exists a higher

probability that the detectors with errors will make an

incorrect decision about what message was sent than the

detectors without errors.

Algorithm ConverQence Rate

In this section, Figures 41 through 44 are used to

compare the algorithm convergence rates (e.g. the number of

iterations required to suppress the jammers) for some of the

more relevant cases. The algorithms are allowed to adapt for
92
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35 iterations which appeared to give a fairly accurate

indication of algorithm steady state values of

-SJR - jammer-to-signal ratio (JSR).

Figure 41 demonstrates that the power inversion

algorithm, implemented in the frequency domain, converges

faster than the same algorithm implemented in the time

domain. This convergence characteristic is mentioned in

Appendix A, and is consistent with Shankar and Peterson's

work (Ref.19i124). Although the frequency domain

implementation converged faster than the time domain, the

time domain yielded lower values of JSR at around 35

iterations for these cases of one CW jammer.

Figure 42 demonstrates that the Applebaum algorithm,

implemented in the frequency domain, converges faster than

the same algorithm implemented in the time domain. Again,

the time domain implementation yielded lower values of JSR at

around 35 iterations. A comparison of Figures 41 and 42

shows that either Applebaum algorithm in Figure 42 performed

better than either power inversion algorithm of Figure 41.

Figure 43 shows that a frequency domain implementation

of the Applebaum or power inversion algorithm converges

faster than the time domain implementation of the Applebaum

algorithm. Further, the frequency domain implementation of

the Applebaum algorithm yielded lower values of JSR at around

35 iterations than the time douain Applebaum implementation

for these cases of two CW jammers. However, it is suspected
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that the time domain Applebaum implementation will yield

lower values of JSR than the frequency domain Applebaum

implementation if the algorithm is allowed to adapt for more

than 35 iterations.

Figure 44 shows that again the frequency domain

implementation of the Applebaum or power inversion algorithm

converges faster than the time domain Applebaum

implementation. Further, the frequency domain Applebaum

implementation yielded lower values of JSR at around 35

iterations than the time domain Applebaum implementation for

these cases of three jammers. However, it is suspected that

the time domain Applebaum implementation will yield lower

values of JSR than the frequency domain Applebaum

implementation if the algorithm is allowed to adapt for more

than 35 iterations.
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V. Conclusions and Recommendations

Conclusions

This thesis has shown that a pre-detection adaptive

interference suppression (AIS) filter can provide additional

improvement against narrowband jamming of PN spread spectrum

(SS) signals. Section II presented a theoretical anilysis of

a SS system model and derived its processing gain (PG).

Section III presented several configurations for implementing

steepest descent algorithms with the programmable transversal

filter (PTF). The configuration utilizing two PTF's, one for

interference monitoring and one for adaptive interference

suppression, was determined to be the most efficient

configuration. Section IV deals with the performance of the

AIS filter. A communications simulation (CONSIM) of the AIS

filter implemented in a SS system was performed. The

performance analysis was carried out in terms of

pre-detection SJR, post-detection SJNR, and algorithm

convergence rate.

The conclusions drawn in terms of pre-detection SJR

are as follows:

(1) The AIS filter provided improvement in SJR for all

cases analyzed except the case of a CW jammer located at the

center frequency of the desired signal. From the limited

data available, no conclusion could be drawn to explain the

inability of the filter to adapt to a centrally located
103
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(7) One of the most important limitations to the use

of the AIS filter is degradation to the desired signal. As

the CW jammer and the desired signal center frequency come

together, the attenuation of the desired signal increases

causing the SJR to decrease until there is no improvement

(Table II, Cases 9-12).

(8) The introduction of nominal filter fabrication and

circuitry errors caused the null depths of the adapted filter

responses to be degraded from their respective responses

without errors.

The conclusions drawn in terms of post-detection SJNR

are as follows:

(9) The AIS filter provided improvement in SJNR for

all cases except the case of a CW jammer located at the

center frequency of the desired signal. Post-detection

improvement followed the same patterns as pre-detection

improvement.

(10) Post-detection improvement is due to both the AIS

filter and the PG of the SS matched filter. It can be noted

from Table III# Cases 2 and 4, that for in-band jammers the

system performance improvement caused by increasing the PG

was 1.5 dB greater than expected. This is due to the

constant filter 3 dB null width causing less degradation to

the desired SS signal having a greater bandwidth or PG.

(ll)'The signal-at the output of the correlator could

not be observed above the interference level before filter
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jammer.

(2) The Applebaum adaptive algorithm provided

typically 8-16 dB (Tables I and II) greater improvement in

SJR than the power inversion adaptive algorithm.

(3) The time domain implementation of the adaptive

algorithms, for greater than 33 iterations, provided more

improvement in SJR than the frequency domain implementation

for the cases of one CW jammer only. However, it is

suspected that the same would be true for two or three CW

jammers if the adaptive algorithm is allowed to adapt for

more than 35 iterations.

(4) The 3 dB widths of the nulls in the adapted filter

responses with the Applebaum algorithm implementation are

smaller than the 3 dB widths of the nulls in the

corresponding power inversion algorithm implementation (e.g.

Figures 21, 22, 25, 26, 29, and 31). This is a principal

reason that the Applebaum algorithm had better performance

than the power inversion algorithm.

(5) Increasing the SS signal bandwidth had little

effect on pre-detection SJR.

(6) For the case of three jammers, the adapted filter

response lobe between the nulls at 245 MHz and 265 MHz with

the power inversion algorithm is 17 dB down from that with

the Applebaum algorithm. This is a principle reason that the

Applebaum algorithm had better performance than the power

inversion algorithm.
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I
adaption occurred for most of the cases analyzed (Table III).

This is due to the inadequacy of the spread spectrum PG to

overcome the strong jamming signals. However, the AIS filter

improved the pre-detection SJR to within the operational

range of the correlator.

The conclusions drawn in terms of algorithm

convergence rate are as follows:

(12) Both the Applebaum and power inversion algorithms

implemented in the frequency domain converged faster than

their respective time domain implementations (Figures 41-44).

This result is consistent with Shankar and Peterson's work

(Ref. 19:124).

(13) The time domain implementation of an adaptive

algorithm yielded lower values of jammer-to-signal ratio

(JSR), for greater than 33 iterations, than its respective

frequency domain implementation for the cases of one jammer

(Figures 41 and 42). However, it is suspected that the time

domain implementation will yield lower values of JSR for the

cases of two or three jammers if the algorithm is allowed to

adapt for more than 35 iterations.

Recommendations

The analysis performed in this thesis provided a

variety of information about AIS filter application to SS

communications. This information indicates areas where

future research might be able to take advantage of the
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results obtained in this thesis. Recommendations are as

follows:

(1) Additional simulations may be performed to analyze

the AIS filter adaptation to a jammer located at the center

frequency of the SS signal. The suggested approach is to

utilize the final tap weight values of Case 10 as the initial

AIS filter tap weights. It is also suggested that the number

of iterations be increased to 200.

(2) Channel propogation effects, other than band

limited Gaussian noise (BLGN), are not included in the

simulation. Multipath and scintillation fading could be

implemented in the simulation to assess the AIS filter's

performance in a more realistic environment.

(3) Determine the performance improvement that ma

potentially be realized for AIS filter application to tbhe

Integrated Communication, Navigation, Identification Avionics

(ICNIA) program at AFWAL/AAAI-3. That is, dete.mine if the

filter can provide in-band rejection of jammers on narrowband

as well as wideband signals (e.g. JTIDS/FH). This may

require cascading an AIS filter with a low sidelobe level

PTF. /

(4) Expand the computer simulation to include an

adaptive null steering antenna with an AIS filter at the

output of each antenna element.

(5) Evaluate the AIS filter performance against

pulsed, swept, partial band, and barrage Jammers.
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Appendix A

A Survey of Adaptive Algorithms

Over the past twenty years numerous adaptive

algorithms have been developed for the rejection of

undesirable energy in communications systems. In the spatial

domain, these algorithms have been implemented to achieve

null-steering antennas, low sidelobe antennas, and beam

steering antennas for interference and jammer suppression.

In the temporal domain, these algorithms have been

implemented to realize active notch filters, echo

cancellation, channel estimation or equalization, and

adaptive interference suppression filters.

A majority of the adaptive algorithms were implemented

in spatial filtering techniques before temporal filtering

techniques became popular. However, the theoretical

similarities between spatial and temporal filtering

algorithms permitted swift transformation of spatial to

temporal algorithms (Refs.l,2,6,10,26).

Temporal domain filters (e.g. the PTF under study in

this thesis) are inherently much smaller than spatial domain

filters (e.g. adaptive antenna arrays). Further, the

physical implementation of some adaptive algorithms requires

bulky adaptive hardware. Bulky hardware is more readily

acceptable for use in spatial filtering where already large

antennas exist than for use in temporal filtering.
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Therefore, a practical consideration in choosing an adaptive

algorithm for temporal filtering is the physical size of the

required adaptive hardware.

Principles of the Adaptive Process (Ref.27:616-617)

The adaptive filter illustrated in Figure 45a will be

used to present the theoretical basis of the algorithms

referenced in this thesis. This adaptive filter is made up

of a tapped delay line connected to an adaptive linear

combiner. The adaptive linear combiner, as illustrated in

Figure 45b, adjusts the gain of the input signals from the

delay line and sums them to form an output signal.

The adaptive linear combiner input signal vector is

given by

t " 1T

(48)

The components of the input signal vector exist

simultaneously on all input taps at discrete times as indexed

by the subscript J. The adjustable weighting coefficients

4. 0w make up the weight vector given by 4
(49)
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Figure 45. Adaptive Transversal Filter
(a) Adaptive Filter Configuration
(b) Adaptive Linear Combiner (Ref. 27:616).
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The output signal equals the inner product of X and W as

given by

- .TW -w~

(50)

The error signal equals the difference between an estimate of

the desired signal, d , and the actual output signal, yJ, as

given by

(51)

It is clear that the objective of the adaptive process

is to adjust the tap weights of the adaptive linear combiner

in order to minimize the mean square of the error c Before

calculating the mean square of the error, the Kth iteration

of the weight vector is expressed as W . The square of the

error is then given by

C. d. - wW

(52)

The mean or ensemble average of the squared error known as

the mean square error (MSE) is given by
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+ b7 eilr7 Vic (53)

Equation 53 is reduced by defining a vector PT as the cross-

correlation between d and X T and by defining R as the inputj j

correlation matrix. These two are given by

(54)

R - E EzT]

(55)

Therefore the simplified MSE is given by

NSErw - Ici Wk

W E [ d/2] _ Z9 I Wk TkRWk (56)

The MSE is a quadratic function of the weights which

can be plotted as a concave hyperparaboloidal surface

(Ref.27:617). Adjusting the tap weights relates to

descending along this surface with the objective of reaching

its minimum point. The technique under consideration here

for that purpose is based on gradient methods. The gradient

of the MSE, Vk , can be obtained by differentiating equation

56 as given below 115



Vic P2F +

as 231 /3%
L3J I (57)

The optimal weight vector, WOPT , is found as usual with

simple calculus by setting the first derivative of the MSE to

zero. That is, by setting the gradient, Vk, to zero and

solving for W. In this way the intuitively pleasing result

for the optimal weight vector, generally called the Wiener

weight vector, is given by

w0" 2P
(58)

Description of the Four Classes of Adaptive Algorithms

Adaptive algorithms suitable for use with adaptive

filters have been organized into the following four classes:

- Steepest descent algorithms

- Random search techniques

- Sample matrix inversion techniques

- Self-orthogonalizing techniques

Steepest Descent Algorithms

The steepest descent class of algorithms is made up of
116



the power inversion, the Widrow LMS, the hpplebaum, and the

Frost algorithms as illustrated in Figure 46. These four

algorithms vary, depending on the characteristics of the *a

priori" information used, the gradient estimation method

used, and the method utilized to accelerate the descent in

the gradient direction.

The power inversion algorithm assumes that the filter

output signal is always noise-like and operates to minimize

the power of this output signal (Ref.2). This technique is

illustrated in Figure 46a. The term power inversion refers

to the ability of the filter to invert the power ratio of the

received signals. That is, an interfering signal 40 dB above

the desired signal at the filter input comes out of the

filter at 40 dB below the desired signal level. Detailed

knowledge of the desired signal is not required by this

algorithm. The theoretical control law is given by

W(+1) - W(k) - n [zn(t) (t)]

(59)

where k denotes the kth iteration (Ref.22:2-22). W(k) is the

weight vector of the kth iteration, ais the loop gain, X t)
n

is the nth tap element output where * indicates a finite time

integration, and y(t) is given by the auxiliary filter by

setting the gain of the nth tap to unity and the gain of all

other taps to zero. In the main filter, the center tap
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where AW(k4I) is the perturbation weight vector, W(k) is the

weight vector at the Kth iteration, Wq is the quiescent

weight vector, a is the loop gain, X (t) is the nth tap
n

element output, y(t) is the filter output, and 0 is a

weighting used to minimize the deviation of the adapted

weight vector from the quiescent weight vector.

The Widrow LMS algorithm operates to minimize the MSE

between the filter output signal and an estimate of the

desired signal (Refs.10,19,22,27). An estimate of the

desired signal is subtracted from the filter output signal to

generate an error signal, c(t), as depicted in Figure 46d.

The weights are iteratively adjusted by the feedback loop at

each of the taps until the correlation between the error

signal and each of the tap outputs is minimized. For any

deviation between the actual and an estimate of the desired

signal, the residual desired signal components in the

feedback error signal path will be considered as interfering

components and will be suppressed. Therefore, a good

estimate of the desired signal is essential with this

algorithm. The algorithmic weight control law is given by

W(k+) - Wk) - a M[ ) - d(t)] w .(t)

(61)

where W is the tap weight vector, a is the loop gain, y(t) is

the main filter output signal, d(t) is an estimate of the
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weight is initially set.to unity gain and all other tap

weights to zero. This creates an all-pass response for the

main filter. The control law then iteratively adjusts the

N-i tap weights to null the interfering signals within the

filer passband. It should be noted that in Figure 46a the

first tap is constrained to unity gain, which is optimal for

some applications. However, it is optimal in this thesis

application to initially set the center tap to unity gain

because the center frequency of the desired signal is located

in the center of the filter bandpass.

The Applebaum algorithm operates to maximize the

output signal to jammer plus noise ratio (SJNR) (Ref.l).

This algorithm is illustrated in Figure 46c. The algorithm

initiates the maximization of the output SJNR ratio by first

setting the fiter tap weights to maximize the response to the

desired signal. The algorithm then operates to minimize the

total power output from the filter, similar to the power

inversion algorithm. This algorithm also attempts to

minimize the time duration (adaption time) in translating

from the quiescent to the adapted filter transfer function.

No reference signal 4s required for this algorithm. The

Applebaum algorithm tap weight control law is given by

AW(k.2) 6 $W(k) - Wq] (y W (60)
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desired signal, X (t) is the nth tap element output, and
n

y(t) - d(t) is the error signal, £(t).

The Frost algorithm, illustrated in Figure 46d, places

certain constraints within the filter passband which tend to

leave the passband unchanged, even in the presence of strong

interfering signals in the passband (Refs.6,22:2-24).

An advantage of the steepest descent class of

algorithms is that a constant loop gain or step size is

realized in the descent operation. This simplifies

implementation, but increases convergence rate (e.g. the

number of iterations required to obtain adaption). The

convergence characteristic of steepest descent algorithms is
2

controlled by the eigenvalues of the input signal

covariance matrix. These eigenvalues control the

time constants of several decaying components in the

filter output during the adaptive process (Ref.22:2-24).

Convergence rate can be decreased by implementing the LMS

algorithms in the frequency domain as opposed to the time

domain (Ref.19:124). This improved convergence rate can be

obtained beciuse the outputs from each of the frequency bands

are partially decorrelated from each other resulting in a

2
An eigenvalue of the input signal covariance matrix X, is

defined as X in the characteristic equation: determinant
(x-XI)- 0 where I is the identity matrix (Ref.21:183).
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diagonally dominant input signal covariance matrix. The

proposed PTF structure allows easy implementation (e.g.

simplicity in required hardware) of the steepest descent

algorithms which makes their use in adaptive filtering

desirable.

Random Search Algorithms

The random search algorithms perform a search through

the weight vectors to reach the extremum of the desired

performance measure (Refs.22:2-24,27). These algorithms are

guided if information about past searches is retained and

utilized, otherwise they are unguided. For practical PTFs

with between 200 and 600 tap weights, random search

techniques offer little application because of the increased

convergence rate associated with many taps.

Sample Matrix Inversion Algorithms

Sample matrix inversion algorithms operate to choose

the optimum tap weights by direct inversion of the sample

input signal covariance matrix (Refs.22:2-24). These

algorithms are useful when there is a small number of tap

weights and when the channel bandwidth is narrow. Also,

these techniques require samples of the signal at each tap

creating the need for much additional hardware. Therefore,

these algorithms are not suitable for implementation with the
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PTF under study.

Self-Orthoqonalizina Algorithms

Self-orthogonalizing algorithms operate to overcome

the sensitivity of the adapted response to the dynamic range

of the input signal covariance matrix eigenvalues

(Refs.7,22:2-25). These algorithms attempt to overcome this

sensitivity by either deflecting the direction of the

gradient vector toward the extremum of the desired

performance measure or by orthogonalizing the input signal

vector space. Since the frequency domain implementation of

the steepest descent algorithms inherently provides a degree

of orthogonalization, self-orthogonalization algorithms are

considered less useful for implementation with the PTF under

study.
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Appendix B

Description of System Simulation Flowdiagrams

COMSIM (communications simulator) is a computer

simulation of a direct sequence spread spectrum system with a

pre-detection adaptive interference suppression (AIS) filter

implemented in the receiver. The simulation includes

modelling of the surface acoustic wave (SAW) AIS filter, its

tap weights, the adaptive control algorithms, and filter

fabrication and circuitry errors. Both the desired and

interfering signals are generated in the simulator, passed

through the AIS filter, and demodulated by a simulated

correlation matched filter.

Flowdiagrams depicting the main program and the two

subroutines necessary to describe system simulation are

included in this Appendix. The flowdiagrams are for the most

part self explanatory, however , further explanation is given

here.

COMSIM is an interactive program intended to be run on

a Tektronix graphics terminal. Therefore, in the beginning

of the main program, several Tektronix subroutines are called

to initialize the graphics terminal.

A brief description of the subroutines (and a few

subroutines within subroutine SPS) called by the main program

that are helpful in understanding system simulation is given

in Table IV. A list of user entered input parameters and

their nominal values is given in Table V.
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Table IV

Description of Primary COMSIM Subroutines

Subroutine Description

PTF Programmable transversal filter. Calculates

the transfer characteristics of a PTF with
complex weights introduced through I and Q

channels. Fabrication and circuitry error

are introduced in the calculation as normally
distributed random variables.

SPS Signal processing subroutine. Computes fast

fourier transform of signals and filter re-

sponse. Computes and plots the filtered
signal and the correlation response. Pro-
vides a statistical analysis of the correla-

tion response.

SJAM Jammer and Gaussian noise generator. Gener-
ates the I and Q CW or pulsed Jammer samples
and the Gaussian noise samples.

SIGDS Direct dequence signal generator. Generates

the I and Q signal samples of a direct se-

quence SS signal.

STATS Statistical subroutine. Computes the maxi-
mum, the average, and the RMS values of a

user specified time interval of the correla-

tion response.

PREPLT Preplot. Prepares a complex array for plot-
ting by returning magnitude and phase as real

arrays.

TSOPLT Tektronix terminal plotting routine. Plots

the magnitude or phase passed by subroutine

PREPLT on the graphics terminal.
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Table V

User Entered Input Parameters and Their Nominal Values

Number of Filter Taps --- (16)

Filter Intertap Spacing --- (5Nsec)

Filter Quiescent Response Offset Frequency --- 50MHz

Filter Tap Weight Word Length --- (8 bits)

Filter Tap Weight Generation Error --- (5%)

Filter Intertap Delay Error --- (0.017 Nsec)

Filter Summing Delay Error --- (0.03 Nsec)

Phase Error Between I and Q Channels --- (50)

Quiescent Tap Weight Values for Applebaum Algorithm ---

(i,0,...,0,0)

Signal Amplitude --- (0dB)

Signal Bandwidth --- (1-50MHz)

Time or Frequency Domain Implementation Choice

Number of Frequency Bands for Frequency Domain --- (16)

Number of Jammers --- (1-15)

Jammer Amplitude --- (30dB)

Jammer Frequency --- (200-300MHz)

CW or Pulsed Jammer Choice

Applebaum or Power Inversion Algorithm Choice

Number of Iterations of Adaptive Algorithm --- (35)

Algorithm Loop Gain Constant --- (10-6)

Lower and Upper Time Limits of Correlation Response for

Statistical Analysis --- (1-6 usec)
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